

X SIMPÓSIO ALAGOANO DE ENGENHARIA CIVIL

"Evidenciando oportunidades em tempos de mudança."

26 E 27 DE OUTUBRO DE 2022

IMPLEMENTAÇÃO COMPUTACIONAL DO MRD EM *PYTHON* PARA ANÁLISE DE TRELIÇAS PLANAS

VIEIRA, Evyllyn dos Santos¹; SEGUNDO, Marcelo Silva Santos¹; BARBIRATO, João Carlos Cordeiro³.

- ¹ Graduanda, UFAL, Maceió-AL (evyllyn.vieira@ctec.ufal.br).
- ¹ Graduando, UFAL, Maceió-AL (marcelo.segundo@ctec.ufal.br).

Resumo. Neste artigo, uma aplicação do Método da Rigidez Direta para resolução de um sistema estrutural conhecido como treliça plana foi implementada. A treliça caracteriza-se um sistema triangular constituído por elementos de barras indeformáveis unidos entre si por articulações, consideradas perfeitas, e sujeitos apenas a cargas aplicadas nas articulações (nós). A formulação do Processo dos Deslocamentos, em linguagem matricial, foi implementada computacionalmente na linguagem de programação Python. Os valores resultantes dos esforços normais internos foram obtidos e comparados com a aplicação de trabalho da área. Verificou-se a adequação do programa computacional elaborado, tanto para valores de esforços normais quanto para os valores de deslocamentos.

Palavras-chave: Método da Rigidez Direta; Implementação computacional em Python; Treliças ideais planas.

1 INTRODUÇÃO

Define-se estrutura como um conjunto, ou um sistema, composto de elementos que se inter-relacionam para desempenhar a função de transmitir as forças solicitantes até o meio equilibrante. Nesse contexto, observa-se nas edificações uma gama de sistemas estruturais, compostos por elementos tais como lajes, vigas e pilares que possuem função de suportar os esforços exercidos sobre a edificação.

No presente trabalho, será analisado o elemento estrutural definido como treliça, que é uma estrutura amplamente utilizada na construção civil, projetada de maneira que esteja restrita a pequenos deslocamentos, e que, as áreas das seções transversais sejam ajustadas por intermédio de uma metodologia baseada em tentativa e verificação. Dessa forma, o usuário de programas comerciais de análise estrutural tais como ANSYS, SAP, NASTRAN entre outros,

³ Doutor, UFAL, Maceió-AL (iccb@ctec.ufal.br).

avalia o desempenho mecânico da estrutura variando as dimensões das seções transversais dos seus elementos componentes de maneira em que atinja a configuração de deslocamentos desejada (CHRISTOFORO *et al.* 2017).

Ademais, entende-se que uma Treliça Plana Ideal é um sistema triangular constituído por elementos de barras indeformáveis unidos entre si por articulações, consideradas perfeitas, e sujeitos apenas a cargas aplicadas nas articulações (nós). Dessa forma, as barras constituintes de uma treliça ficam exclusivamente sujeitas a esforços normais, de tração e compressão, que são chamados de esforços primários. As treliças possuem partes definidas como: Banzo (cordão) Superior: Barras superiores da Treliça; Banzo (cordão) Inferior: Barras inferiores da Treliça; Montantes: Barras verticais; Diagonais: Barras inclinadas, conforme é apresentado na Fig. 1.

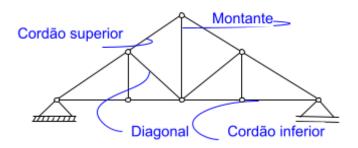


Figura 1: Elemento de uma treliça. Fonte: Autores (2022).

Pode-se utilizar o modelo de treliça diretamente para esse sistema estrutural ou considerá-lo ferramenta para outras análises. Nesse sentido, percebe-se a importância de analisar uma treliça, uma vez que, em conformidade com o princípio criado por Morsch em 1906 no ensaio intitulado "Treliça de Morsch". A hipótese trata-se de que, ao analisar uma viga de concreto fissurada, seu comportamento é semelhante a uma treliça. Portanto, o uso da análise de treliça pode sair de seu estrito campo e avançar em comportamentos mais complexos, como nas vigas de concreto.

2 FORMULAÇÃO BÁSICA DO MÉTODO DA RIGIDEZ DIRETA

Segundo Logan (2007), o Método da Rigidez Direta está relacionado à definição de matriz de rigidez (k), que pode ser denotada como a relação entre força (f) e deslocamento (d), conforme a Eq. 1.

$$f = kd (1)$$

As estruturas reticuladas analisadas no presente trabalho são as treliças planas, que possuem 2 graus de liberdade por nó, μ 1 e μ 2, aqui considerados. A simbologia μ é utilizada para deslocamentos e θ para rotações em relação ao sistema cartesiano de referência.

Uma das características mais marcantes do Método da Rigidez Direta (MRD) é a soma de contribuições de coeficientes de rigidez locais das barras para compor os coeficientes de rigidez globais da estrutura. Essa soma é feita de forma explícita e direta (MARTHA, 2010).

Nesse contexto, Loriggio (2000) apud Stramandinoli (2003) descreve as etapas referentes ao MRD, resumidamente apresenta-se: A elaboração do modelo da estrutura

(Escolha do sistema estrutural resistente, comportamento dos componentes da estrutura, vinculações, propriedades dos materiais, dimensões da estrutura, geometrias dos componentes, carregamentos e combinações de carregamento); a definição e numeração do nós e da incidência e numeração das barras; o cálculo da matriz de rigidez no sistema local [k]; o cálculo da matriz de rigidez no sistema global $[K] = [\beta]^T [k] . [\beta]$, sendo $[\beta]$ a matriz de incidência cinemática; a determinação do vetor de forças de imobilização dos nós de cada barra no sistema local $\{P_o\}$ e do vetor de esforços de imobilização dos nós de cada barra no sistema global $\{f_o\} = [\beta]^T . \{P_o\}$; a montagem do sistema de equação da estrutura em relação aos graus de liberdade originais, vetor $\{\}$ (deslocamentos), $\{f\}$ (ações nodais) e sua respectiva resolução; a determinação do vetor de reações de apoio nas direções restringidas e os esforços solicitantes nas extremidades das barras nos sistemas global e local.

No presente trabalho, será analisada a treliça plana, cuja matriz de rigidez correspondente está vinculada ao elemento padrão definido na Fig. 2, tomando-se como base os graus de liberdade orientados no sistema de coordenadas globais.

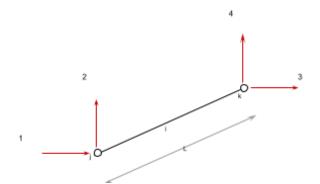


Figura 2 : Elemento de barras e suas coordenadas nas orientações globais. Fonte: Autores (2022).

A partir da definição da estrutura e dos elementos de barra, utiliza-se a formulação básica do MRD, seguindo o roteiro simplificado apresentado anteriormente, conforme Loriggio (2000) *apud* Stramandinoli (2003).

3 IMPLEMENTAÇÃO COMPUTACIONAL

No contexto da essência dos métodos da análise de estruturas está na representação discreta do comportamento contínuo, analítico e matemático de um modelo estrutural em termos de um número finito de parâmetros. Dessa maneira, a solução do problema estrutural, que essencialmente busca a determinação do campo de deslocamentos e do campo de tensões no domínio geométrico da estrutura, é alcançada por meio da determinação dos parâmetros que representam o comportamento do modelo estrutural de forma discreta (MARTHA, 2010).

No entanto, percebe-se que essa determinação dos campos de deslocamentos e tensões, tornam-se inviáveis de serem calculados de forma manual; logo surgiu a necessidade de implementações computacionais, a fim de automatizar essas determinações. Portanto, será primordialmente utilizado o Método da Rigidez Direta (MRD) no presente trabalho, a fim da determinação de esforços internos solicitados no elemento estrutural analisado.

Continuamente, foi realizada a implementação computacional do MRD, utilizando a linguagem de programação *Python*, da qual foi usado a entrada de dados, mediante a arquivos

textos e saídas de dados pelo próprio terminal (CDM). Na Fig. 3, apresenta-se o fluxograma das principais tarefas utilizadas no código computacional elaborado.

Figura 3: Fluxograma. Fonte: Autores (2022).

4 APLICAÇÃO

Nesta seção, serão colocados à prova a formulação apresentada e o algoritmo implementado computacionalmente, na análise de treliças ideais planas.

Trata-se de uma treliça ideal plana, isostática, com as dimensões e disposição apresentadas na Fig. 4. As solicitações externas estão agindo nos pontos C e E e valem 1,0tf. O módulo de rigidez axial EA vale 20.000tf. A treliça é apoiada nos pontos A e B, segundo e primeiro gêneros, respectivamente.

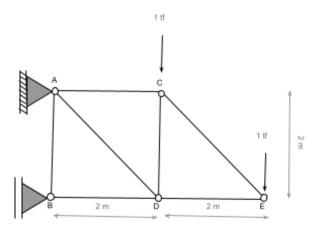


Figura 4: Treliça ideal para análise. Fonte: Azevedo (2020).

O programa computacional, elaborado na linguagem Python, entrega os Esforços Internos Solicitantes. Para a aplicação em questão, os resultados fornecidos encontram-se apresentados na Tabela 1 e comparados com os valores referentes ao trabalho de Azevedo (2020).

Barra	N	N (deste trabalho)
	(AZEVEDO, 2020)	
AB	0	0
AC	1	1
AD	2,83	2,83
BD	-3	-3
CD	-2	-2
CE	1,47	1,47
DE	-1	-1

Tabela 1. Coeficientes de relações constitutivas. Fonte: Autores (2022).

O ponto mais desfavorável para deslocamentos verticais é o ponto E. Facilmente, no algoritmo implementado, obtém-se esse valor, observando a correspondente coordenada global e seu deslocamento: $d=1,85\,\mathrm{mm}$. Na Figura 4, apresenta-se a deformada da treliça em análise, retirada do *software* FTOOL (MARTHA, 2002), que traz o mesmo valor do deslocamento vertical na ponta em balanço.

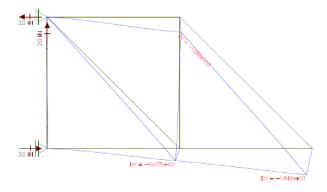


Figura 5: Deslocamento da treliça ideal em análise. Fonte: FTOOL (MARTHA, 2002).

5 CONSIDERAÇÕES FINAIS

A treliça é um tipo de sistema estrutural bem versátil e com utilizações diretas e como modelo para analogia de comportamentos em diversos outros sistemas (em vigas, para avaliar as tensões de cisalhamento).

A formulação matricial para análise de treliça é bem simples, mas guarda a sequência padrão do Método da Rigidez Direta. Os resultados vindos desta formulação são bem precisos, destacando os trabalhos publicados sobre o assunto ao longo dos tempos.

A implementação computacional, passos e linguagem *Python* escolhidos, foi adequada, permitindo a modelagem da estrutura com os parâmetros iniciais e a saída dos resultados (em

forma de relatório). O processamento em microcomputadores é rápido, portanto, com desempenho adequado para a velocidade que se espera no processamento.

Os resultados da implementação feita neste trabalho foram confrontados a casos analisados em outros trabalhos científicos e se mostraram bem precisos, comprovando o acerto da formulação escolhida, bem como a implementação computacional realizada.

Com esse código computacional implementado, pode-se acrescentar para o futuro saída de dados em ambiente gráfico, com visualizações mais interessantes ao usuário. Ao mesmo tempo, pode-se utilizar o código como ferramenta para se analisar as tensões de cisalhamento em vigas de concreto armado, no sentido de melhor entender o comportamento desse outro elemento estrutural bastante utilizado nas estruturas civis.

AGRADECIMENTOS

Agradecimentos dos autores ao Programa de Educação Tutorial de Engenharia Civil da Universidade Federal de Alagoas por todo suporte oferecido ao longo deste projeto.

REFERÊNCIAS

AZEVEDO, H. V. F. **Apostila de Teoria das estruturas 1.** Universidade Federal de Alagoas, UFAL. Maceió, 2020.

CHRISTOFORO *et al.* 2017. Structural reliability of prestressed timber bridges considering real traffic.

CARNEIRO, C. C. Contribuição à análise de pavimentos em concreto: emprego da analogia de grelha e da rigidez de pilares. Monografia, Curso de Graduação em Engenharia Civil. Universidade Federal de Alagoas, UFAL. Maceió, 2022.

MARTHA, Luiz Fernando. FTOOL (MARTHA, 2002) - Um programa gráfico-interativo para ensino de comportamento de estruturas. **Versão educacional, v. 2**, p. 33, 2002.

MARTHA, L. F. Análise de Estruturas: Conceitos e Métodos Básicos. Elsevier Editora, Rio de Janeiro, 2010.

STRAMANDINOLI, J. S. B. Contribuições à análise de lajes nervuradas por analogia de grelha. Dissertação, mestrado. Universidade Federal de Santa Catarina, UFSC, Florianópolis, 2003.

THOMAZ, E. C. S. **Treliça de Mörsch – Comentários.** Disponível em: http://aquarius.ime.eb.br/~webde2/prof/ethomaz/moersch/trelica_comentarios.pdf>